e EDITOR ANLC
e EXTENDED
I REFERENCE

MANUAL =
[CIPC4PandC8P]

| OHIO SCIENTIFIC
SOFTWARE

695

OHIO SCIENTIFIC

ASSEMBLER EDITOR and
EXTENDED MONITOR
REFERENCE MANUAL

© Copyright 1981 by Ohio Scientific Inc.
Printed in the United States of America.
All rights reserved. This book, or any part thereof, may not be reproduced without the permission of the publishers.

Although great care has been taken in the preparation of this manual to insure the technical correctness, no responsibility is assumed by Ohio Scientific
for any consequences resulting from the use of its contents. Nor does Ohio Scientific assume any responsibility for any infringements of patents or other
rights of third parties which may result from its use.

If you discover misprints or errors, please send a letter to the attention of: Documentation Department, Ohio Scientific Inc., 1333 S. Chillicothe Road,
Aurora, Ohio, 44202

CONTENTS

CHAPTER PAGE

1. INTBODUCTION.sisimmmmsiinisiisisssiimmsmims s s sini i ass e s ms s sl ioh i sde s sava oy 1

2. BUILDING BLOCKS OF ASSEMBLY LANGUAGE......c.ccciummummmmnemmmmssssnsensanissssnsnsnsssnssnanns 2

A OPERATION SYMBIOLS:...coiveimiesuccanisuauinmsivstnsinsoies s tentstiss s st st shnsasa sensassssansseansamsiswensessnsoasasssrssboiiasthon 2

B CONSTANTS....uoceosensronnnsinsansnnesasisssnssnesams s 5ss55 st oo T TR A SR Eava G A s S aE AR SRS R VAR RSP b 2

C. LABELS AND EXPRESSIONS.....iccrisusssuimsinsisinsaissnississasnsessnissnisnscssasmiastissasnssnnsusainsasunusauvunsenssbansesnriye 2

3. ASSEMBLY LANGUAGE STATEMENTS.......rcciininininsssmnsssnessssssssssssssassssssssnsnnnnnanes 3.7

O = | 1o 3

B. INSTRUCTIVES.....cccoiittmtsisuasnnesassasssnsersssasssssssssss sassssssassasssasssssasses shesmessassnsssasasssssassnsssasnnssssssssssnsssssansas smes 35

(1) Direct AdAreSSiNg........ccccciraiiaccisssimssmsssssrusmimsisssssssasssssnsusasiassssssssnsntsssnsssantansss st sanssanssasassans snsnssansan 3,4

(2) Immediate AdAreSSINg.......c.ccccuiiiaiiumiuinmismnminisnissiisnsssssssssassssssssssssssssessassssssssssasssssassasssssass sansssan 4

(3) INCAONO ATPOBBIING. -ssmusssssssvevssnsusussesiosnsssisssssnsanssdsndssnsinssisassnisisisosiissismivasiassssas dupi4auiraIaRRI VESRSNIIVi Fros 4,5

(4) Indirect ADAre88ING ... iuuisisimisinssissassisnsnisisssissiniisisisisaissstsesnsssaansssisnsnms sinanssinmmanan s (smasennsareen sukatnnn 5

(5) IMplied AdAreSSiNg.......ccccesiarsamismssmsimssnmssnsssnsmsssssssssssasnssasasssssansssns sanssssasassss sasnsssesasassssssasanasns nnnssanss 5

C. DIRECTIVES. .cossismsussssmomssunusiumssishiisis i oy in s er ks s ine 464 Vs s sy s anass s A s s vw ks v msbmtannsssms nssnons s anbnas 1 e a RS eaRS 5-7

(1) The LOCAtiON COUNRGY.......ccmsumarussssscrssasssssissssannsssssnssoisnnsssannsasaanssisvesnnsasinnssssansansussssasssstasissassisannnse 5,6

(2) Defining LADeIS.....cciiisuississnasnsasssesssnsssnsssiniassnssanssnsansansanssssassns ivas susesas s i66a0asesne 008 1asRRLIR LR RS R SRR RS PR SRS S ARE 6

(3) DAtA LOCAIONS......ccseccimirecimanssassanconsstsensassassnssssnsasssnnsansassnsssnssssessarssssnmsnatass sussassanssssananssns asseesansonsnssn 6,7

(A) BYbO.ueesinciumnninsnasnssinssnssumsuinnasnsssssnssnissnssasssnnsnsinssansantssnnsuss sussusssassnsinsansnes bassasssesnsstsstssassmassassanssasantaes 6

(D) DBYRR....cimrsicuersesmsessssssassnsnssssssssssssasssenmsssssasssrnennsasasast ssssss samassansananssessnassssssnnsnsasnsossssssansassnssssassssasns 6,7

(C) WO, :oncssimsussusnnssunsissiessinnsmnensnasvansnsesnsdborsiasiqssssss ousonaiavpisavnsvsdoanmmni smanuntiniis sebssunnss puaiseR RO P T S cinniianiaitn 7

4. BUILDING AND EDITING AN ASSEMBLY LANGUAGE SOURCE FILE........c.cccusseuuninnans 8

5. ASSEMBLY COMMANDSS cuucviissssmnsssussssssnssmssensssssessins st einssseiissdssdistsesrssssvssssnnniusmunanane 9
6. AN EXTENDED EXAMPLE (THERE ARE MANY SHORT EXAMPLES IN THE

PRECEDING SECTIONS)......ccccettmimmsssessssassassansnnnaasnnnsenses 10-13

7. RUNNING A MACHINE LANGUAGE PROGRAM.......ccccoccummmmmmmmmmmmmmmmmmmmmmmmmmmissasssssnsansanes 14

A. USING THE PROM MONITOR-CASSETTE BASED SYSTEMS.........ccoreermsammessmsnsnmsansssnssnssssasssnssassssases 14

B. USING THE DOS KERNEL-DISK BASED SYSTEMS..........cccccoiminimsrmismncnmnsmssnsmsssmsnsssnsnssrssssssenssssansassasses 14

C. USING THE PROM MONITOR-DISK BASED SYSTEMS........cccccsmusmmsnmmmstmssnssansnsisnasnsssassassssssasssnssnsanssas 14

8. THE EXTENDED MONITOR......corusssesnsesaseasinsmassssssssssssnssssssssasnsnsisassvsnssnansassssessssasssanes 15-19

A THE EM COMMANDS ...c.cucuimmiaunmammimssssinusiin asissaussinsntssssdunsinssunssssnsnsssansneaiasnnesanssees s anme s ee 88 ansntanssnas 15-17

B. THE R AND M COMMANDS IN DETAIL WITH EXAMPLES..........ccccousmmmmisunmmmrasssssassssessesasssamsasssnssnsans 16

C. BREAKPOINTS AND DEBUGGING WITH EXAMPLES.........ccccccniiiimmmmmsnennnimmmnsenmmsssssnsisssssanssssanses 17-19

CHAPTER PAGE

9. INTERFACING WITH BASIC.......cccccvmmmmmsnmmnmssmmssssssssassssssssmsnssssssnssssessssanssssesassssssnnsssnss 20,21

R USR FUNCTION. .cocossusmnusssimsmmmsunmmanmmmsyiomiss e s s s e s s o s s s S ussepass 20

B. DISKI “GO.ucciiiuirisninmsersssessssstsssanssesssssserasssssmsssssssssssssnsasassssnssassssssssssssasssssssssas sassssassssss saesssnssssnsss sussssnnsnssass 20

G DISKY WGV cuisisunnessonn sunesunsussnorrssinnssesisiiseiinssins st i s i s e ais 20,21
APPENDICES

A. ASSEMBLY ERRORE...........ccccoincumsumsnssmmmmssssiusissssnisssmssisssmssisasisbinmnssissossssbesiissibuisniinississsassebisaissisiossi 22

B. 6502 INSTRUCTION ADDRESSING MODES............cccccstsummmsmmnmserssssmssssssesssnssssssssssssssssessssssasssnsassassassesnss 23

C. ASSEMBLER/EDITOR STATIBTICS.....ccucnanmimnsarussissiisisssisosemssosiisnsisssssonsinaysnssssssnsensisisisnsassionss 24

D. 0S-65D VERSION OF ASSEMBLER/EDITOR.......ccccccuratmiumssamsmssssmsnssusssssssesssssssssssssssssssasssssssssnsssssssassnss 25

E. CASSETTE VERSION OF ASSEMBLER/EDITOR.........ccocsrssssnsnssmsnsanssssesnssnssssnssssassnsnssnssssnssssassassssss 26,27

F. EM COMMAND SUMMARY.....cccuturumssinmsansersansessasssssessnsssssnssnssassessssssssssssssssnssnssssssssssnssssssssssssasenssssssssannnss: 28

G. 0S-65D VERSION OF EM...ccuiicinisiosnsnsmmvessssissssesnsesumsssussansnsisssssseiisssisinssiosinssstuusisilsasisssinsissssuiassiaissssiass 29

H. CASSETTE VERSION OF EM.......cccoouitmnminmmsmmsmnmsasssunsessssssssnssnsanssnsssssesssssssnssssssssssassssssassssssssssnnssasssssnnas. 30

I. ROM MONITOR COMMANDS.......couumsasanssistsssiosussusssisasimssssiisssssiss s mssiissannssies ssisssss ssmmmrronmissnnssn 31

Ui ASCH TABLE.......oceitisueitistemsssnncsrassssssssassassnsssssssssasssessessassssssasssss mnns s e ssssssss s e mmssssons sassensssssnnnssnssnsnnssnnssas 32

K. CHECKSUM PORWA Touiuoiusioscssiisivssimscstoonsismsiimsos i smmesissi i 33

L. 05450 COMMANDS AND ERRBORS......cnrusummmmsombosmnsmmsesismtsnmssmssssabiss i bt 34-36

M. FLOATING POINT STORAGE FORMAT........cccccccumiumumsucnssunssssssssnsassassassmsssnssassssssssssssssssssanssssessassssasssssns 37

N. 65602 DISASSEMBLY TABLE.........c.onnmmiomsensmmmsuissssssssissoniosainibiss i iositumoasivamsise 38

0. 8902 REFERENCE LIST . cruuasiiisannssimssisniinmiimitisassssainssmsssimmmmni o tsimessiios 39,40

INDEX et s s s s sa e sne e rssassa s seRe R se s A e sRR BB RR AR SRR R RS 41,42

CHAPTER 1
INTRODUCTION

This manual is intended to be an introductory and
reference manual for entering, editing, debugging and
running assembly language programs using the OSI
Assembler/Editor and Extended Monitor. This manual
is not intended to be an introduction to assembly
language programming. See Appendix O for a list of
introductory texts. We shall assume that the reader is
familiar with binary and hexadecimal numbers, the
two’s complement system for storing negative numbers,
the architecture of the 6502 microprocessor (registers,
flags, the stack, memory organization) and the rudi-
ments of 6502 assembly language. In this manual we will
use the following conventions.

<CR> The carriage return key on the
keyboard
<LF> The line feed key on the keyboard

<BREAK> The break key on the keyboard

1 An up-arrow. May be 1, /\, or
shift-N on some keyboards
@ The commercial-at. May be shift-P

on some keyboards
We will use the following terms:
BYTE—The standard eight bit unit of storage.

MACHINE LANGUAGE—The language the micropro-
cessor understands. For the 6502, each machine
language instruction occupies one to three bytes of
memory. Hence, a machine language instructor is one 8
bit number, two 8 bit numbers or three 8 bit numbers.
When the microprocessor is running, it is always a
machine language program that is running.

ASSEMBLY LANGUAGE—A symbolic language in
which every line of a program translates into one
machine language instruction. This is in contrast to high
level languages like BASIC or PASCAL in which each
line corresponds to many machine language instruc-
tions. While a machine language program consists
entirely of groups of 8 bit numbers, in an assembly
language program, the programmer may use symbolic
names (mnemonics) for the machine instructions.

ASSEMBLER—The program which translates an as-
sembly language program into machine language. The
OS] Assembler/Editor also contains features which
allow the editing of assembly language programs. While
programmers sometimes say they are writing programs
in “Assembler,” it is technically more correct to say
assembly language. An assembler is a large program,
which functions somewhat like a compiler.

ADDRESS—The memory of a 6502 computer is
organized into bytes. Each of these bytes has a unique
number associated with it called its address. Addresses
are usually written as 4-digit hexadecimal numbers. The
first address is $0000. ($ denotes a hexadecimal
number.)

PAGE—Memory is organized into large units called
pages. Each page is 256 bytes. Page 0 consists of those
bytes with addresses $0000 through $0OFF, page 1 is
those bytes with addresses $0100 through $01FF, and so
on. Page 0 is important on the 6502, in that instructions
which refer to page 0 are shorter and execute faster than
instructions that refer to other parts of memory.

EFFECTIVE ADDRESS—Most 6502 instructions make
reference to some byte of memory. The address of that
byte is called the effective address for that instruction.

OBJECT CODE—Machine language. Generally this
refers to the result of assembly of an assembly language
program.

SOURCE CODE—The assembly language program to
be assembled. The assembler translates source into
object.

FILE—A program or group of data. Thus a file may be
an assembly language file, a machine language file or a
source file.

LOCATION COUNTER—When the assembler is as-
sembling a source file, it keeps track of where in memory
(the location) the object code is being put. The location
counter is where that location is kept. Hence, the loca-
tion counter is a place in memory that contains an address.

CHAPTER 2
BUILDING BLOCKS OF ASSEMBLY LANGUAGE

Each 6502 assembly language statement is composed
of one or more parts. Each part is built from the
following:

A. OPERATION SYMBOLS

These are three-character codes which the assembler
translates directly into a machine language operation
code. For example, TXA (Transfer register X to register A)
is the operation symbol for the 6502 operation code
(opcode) $8A.

B. CONSTANTS

A constant is a number. On the 6502, a constant is
usually an 8 bit (one byte) or 16 bit (two bytes) number.
The programmer may use numbers in decimal, binary,
octal or hex (hexadecimal) and may also use character
string constants, which are stored in memory in the 8 bit
ASCII code. These codes are listed in Appendix J.

1) A decimal constant has no prefix.

2) A binary constant is prefixed by a per cent sign
(%).

3) An octal constant is prefixed by a “commercial
at” (@) sign.

4) A hex constant is prefixed by a dollar sign ($).

Thus, for example:

26 = %11010 = @32 = $1A

5) A character string constant is a string of
characters enclosed in single quotes (apostro-
phes). (If an apostrophe is to be included in the
string then two consecutive apostrophes must
be used.) Each character in the string is stored
in one byte in memory in the ASCII code. For
example, ‘A/3’ is stored as $41 2F 33 and ‘P’*R’
is stored as $50 22 32.

C. LABELS AND EXPRESSIONS

A label or symbol is a group of characters which looks
like a variable name in BASIC or FORTRAN. A label

consists of one to six characters from the set

A-Z
0-9

$
The first character in a label must be a letter. The
characters must be contiguous, that is, there must be no
blanks between the characters. The single letters A, X,
Y, S and P cannot be used as labels, since they refer to

the 6502 registers, and no operation symbols (like JMP,
SEC, BNE) can be used as labels. Examples:

LEGAL ILLEGAL
LOOP POINTER
END.2 $PR
TABLS A/B
START: LOO P
XY A

LDAX LDA

The programmer may also use arithmetic expressions in
a program. An expression may be like an arithmetic
expression in BASIC with no parentheses and no
exponentiation allowed. Evaluation of an expression is
always done left to right without regard to precedence of
operators. Expressions are always evaluated to an
answer of 16 bits or less, with any overflow ignored.
Division is integer division with any remainder ignored.
An expression cannot begin with a minus sign, however,
an expression like 0-1 is allowed, with the answer
appearing in two’s complement form if it is negative. For
example, if Q=3$50AF and D =64 then the

EXPRESSION EVALUATES TO
Q/$100 $0050

Q*256 $AF00
Q/256*256 $5000

D+ $0A/%1010 $0007

The assembler also recognizes one predefined label, an
asterisk (*), which denotes the current contents of the
location assignment counter. The assembler can tell
from context if an asterisk means this or multiplica-
tion.

CHAPTER 3

ASSEMBLY LANGUAGE STATEMENTS

There are three kinds of statements that can be
entered into an assembly language source program: (a)
remarks, (b) instructive statements and (c) directive
statements. Each line must begin with a line number.

A. REMARKS

A line that begins with a semicolon (;) is a comment.
Remarks are printed in any listing, but they do not affect
the object code produced during assembly. In addition,
any line in a source program can contain comments, as
described below.

B. INSTRUCTIVES

These are the actual assembly language instructions
that translate directly into machine language code. An
assembly language statement has up to four parts called
fields. The general form is

label operation symbol operand remarks

The label and remarks fields are always optional. Some
statements require that the operand field be blank. The
fields may begin in any column and they are separated by
blanks. It is, however, good practice to tabulate the four
fields in columns. See Appendix D for tab characters.

For the statements that require an operand, the
operand is either (i) the data for the instruction, or (ii)
the Effective Address, or (iii) the information needed to
calculate the Effective Address. To facilitate some

ARITHMETIC DATA MOVE BOOLEAN
ADC LDA AND
DEC LDX BIT
INC LDY EOR
SBC STA ORA

STX
STY

examples we will next describe two directive statements.
These will be described in greater detail in the following
section.

The form of the .BYTE statement is

label .BYTE

The label and remarks fields are optional. The operand
may be any expression. This directive causes the
assembler to generate a one byte constant at the current
location in the program.

The equals (=) directive causes a label to take a value
which is used throughout assembly. The form is

operand remarks

label = expression remarks
or

* = expression remarks

The second form sets the location counter to the value of
the expression, and thus tells the assembler where to put
the machine language code when the program is
assembled.

Now back to assembly language instructive state-
ments. The 6502 assembly language has five different
addressing forms:

1. DIRECT ADDRESSING
The form is

label op symbol operand remarks

The label and remarks fields are optional. The value of
the operand is the Effective Address. The instructions
that can be used in the direct addressing mode are

COMPARING SHIFTING BRANCHING
CMP ASL BCC
CPX LSR BCS
CPY ROL BEQ

ROR BMI
BNE
BPL
BVC
BVS
JMP

JSR

The shifting instructions, in addition to allowing an
expression as operator, may also have an A as operand,
indicating that the accumulator is to be shifted. For the
arithmetic, data movement, boolean, comparing and
shifting instructions, two bytes of machine code are
generated if the operand is less than $100 (i.e. on page
zero). If the operand is greater than or equal to $100,
then the machine code is three bytes. Execution is faster
if the operand is on page 0. If the operand is an A (for a
shifting instruction) then only one byte is generated.
Three bytes are always generated for a JMP or JSR
instruction. Two bytes are always produced for the other
branching instructions, but the difference between the
address of the instruction and the Effective Address
must be between —126 and 129.

Example:
10 *=$200
20NMBR1 .BYTE $1

30NMBR2 .BYTE $4
40NMBR3 .BYTE $8
50START LDA *-2

60NEXT LDA NMBR1+1

70 LDA NEXT-5

80 LDA $201

90 LDA START +$400/3

The directive at line 10 causes the location counter to be
initialized to $0200, so the first byte of data is placed at
address $0200, that is, NMBR1=$0200. Hence, when
this source code is assembled, the assembler will
place a 1 in the byte with address $0200. Similarly,
NMBR2=3$0201 and a 4 is placed at that byte and
NMBR3 =$0202 and contains an 8. The instruction at
line 50 is assembled into three bytes beginning at address
$0203, hence START =$0203, NEXT = $0206 and the *
in line 50 refers to the address of that instruction, so, at
that point, * =0203. Therefore, the instructions at lines
60-90 are all the same, that is, each loads the
accumulator with the contents of the byte whose address
is $0201. After execution of any one of these, then, the
contents of register A would be 4.

2. IMMEDIATE ADDRESSING
The form is

label op symbol #operand remarks

The operand can be any expression. The pound sign (#)
is the indicator that this instruction is in the immediate
addressing mode. In the direct mode, the value of the
operand is interpreted to be a memory address. In the
immediate mode there is no Effective Address. If the
value of the operand is larger than 8 bits then any extra
bits (on the left) are ignored. The instructions which can

be used in the immediate mode are ADC, AND, CMP,
CPX, CPY, EOR, LDA, LDX, LDY, ORA and SBC.
Example:

10 *=$400

20 NUM=$F

30 BIG=$285

40BEGIN ADC #10

50 ADC #NUM-5

60 ADC #BIG/$100+ @10

70 ADC #BIG*2

80 ADC #BEGIN/32-22
In hex,

BEGIN = $400

BIG/$100 = $2

BIG*2 = $50A

and
BEGIN/32 = $20

Each instruction (lines 40-80) adds, with carry, a decimal
10 to the accumulator.

Example:
10 *=$20
20DATA .BYTE 255
30 LDX #DATA
40 LDX DATA

In this example, DATA = $20. In line 30, DATA itself is
the data, so this instruction puts the decimal number 32
into register X. In line 40, DATA is the Effective
Address, so this instruction puts a decimal 255 into
register X.

3. INDEXED ADDRESSING

The form is

label op symbol operand, X remarks
or

label op symbol operand,Y remarks

In the first form, the effective address is the value of the
operand plus the contents of register X. That is,

Eff. Ad. = operand + C(X)
In the second form

Eff. Ad. = operand + C(Y)

The value of the register is always taken to be
non-negative, so @ = C(X) = 255 and 0 = C(Y) = 255.
Some indexable instructions can be indexed by either
the X register or the Y register and some can be indexed
by only one. See Appendix B.

Example
100 *=$100E

120UNO .BYTE 5

130DUO .BYTE 7

140TRES .BYTE 9

150START LDX #1

160 LDA DUO,X

170 LDX #2

180 LDA UNO,X

190 LDY #1

200 LDA START-2,Y

For each LDA instruction (lines 160, 180 and 200) the
effective address is $1010, so each puts a 9 into the
accumulator.

4. INDIRECT ADDRESSING

The form is

label op symbol (operand) remarks
or

label op symbol (operand,X) remarks
or

label op symbol (operand),Y remarks

Only the JMP instruction can be used in the first form.
The second form is called indexed indirect and the third
is indirect indexed.

In the first form Eff. Ad. = C(operand)

In the second form Eff. Ad. = C(operand + C(X))

In the third form Eff. Ad. = C(operand) + C(Y)

In each the operand must be less than $100, i.e., the
operand must be on page 0. For these instructions, the
operand is taken to be the address of a .WORD, that is,
a two byte number with the first byte containing the
eight low order bits and the second byte containing the
eight high order bits of the Effective Address, below.
Hence the two bytes of the 16-bit number are in
reverse order. For example, if C($001B)=8$FF and
C(8001C)=$2A, then the Effective Address for the
instruction

JMP ($001B)

is $2AFF.
Example:
5; Page 0 constants

10 * = $80
15ADDR1 .BYTE $C1
20 .BYTE $12
2 5ADDR2 .BYTE $C0
30 .BYTE $12
35
40 * = $12C0

45; more constants

50K1 .BYTE $FA
55K2 .BYTE $FB
60K3 .BYTE $FC
65K4 .BYTE $FD
70 LDX #2
75 LDY #2
80 LDA ADDR1
85 LDA ADDR1,X
90 LDA ADDRI1,Y
95 LDA (ADDR1,X)

100 LDA (ADDR1)Y

The effect of each LDA instruction is as follows:
LINE EFF.
AD. ACCUM
(After Execution)

80 $80 $C1
85 $82 $Co
90 $82 $Co
95 $12C0 SFA

100 $12C3 $FD

5. IMPLIED ADDRESSING
The form is
label op symbol remarks

These instructions have no operand. They generally
refer to an operation on a flag, a register or a register
pair. Some instructions of this type are SEC (SEt the
Carry flag), INX (INcrement the X register) or TXS
(Transfer register X to the Stack pointer). Each
instruction in this addressing mode produces one byte of
machine language.

C. DIRECTIVES

These assembly language statements do not translate
into 6502 machine code. Directives are used to tell the
assembler where in memory to put the object code,
define labels and set up data locations in memory.

1. THE LOCATION COUNTER
The form is

* = expression

where the expression may contain an *.

For example:

10 * = $440B

20 LDA #%101
30DATA1 .BYTE $1A
40 " ="+ 2
50DATA2 .BYTE $F0

The op code for an LDA instruction in the immediate
mode is $A9, hence the LD A instruction is assembled to
$A905. When the program is assembled, the machine
code produced is:

ADDRESS (Hex) CONTENTS (Hex)

$440B $A9
$440C $05
DATA1= $440D $1A
$440E ?
$440F ?
DATA2= $4410 $F0

The directive on line 40 causes the assembler to skip the
two bytes with addresses $440E and $440F, so the
contents of these bytes are not changed at assembly
time. The statement

=42

allows the programmer to refer to DATAI as an array of
three elements with an index register (X or Y) acting as
subscript.

2. DEFINING LABELS
The form is
label = expression

Example:

10 *=$1BF8

20 W=g%12

30 E=2"W+3

40 START LDA #E-W/3
50 J="-1

The labels in this example have the following values:

LABEL VALUE (Hex)
w $12
E $27
START $1BF8
J $1BF9

When this example is assembled, the location counter
has the value $1BF8 before line 40 is assembled and the
value $1BFA after line 40 is assembled. Hence, when
line 50 is processed, *=$1BFA. Since E is defined in
terms of W, an assembly error would result if lines 20
and 30 were interchanged.

3. DATA LOCATIONS

The assembler recognizes three directives which may
be used to set up memory locations with data. The
.BYTE directive is used to define one byte of data and
.DBYTE and .WORD set up two bytes, with . WORD
producing data with the bytes in reverse order, as
required for indirect addressing.

a. .BYTE
The form is
label .BYTE operand remarks

The operand may be one part or several parts separated
by commas. There must be no blanks (except in quotes)
anywhere in the operand because a blank is used to
separate the operand and remarks fields. Each part of
the operand is either an expression or a string of
characters enclosed in single quotes. Each expression or
character in quotes produces one byte of data in
memory. If the value of an expression is more than 8 bits
then only the rightmost 8 bits are used.

Example:
10 *=$0F0E
20 C=15
30 Q1 .BYTE 10,$10,@10,%10

40 Q2 .BYTE C-3,Q1/$10
50 Q3 .BYTE ‘OSI',0
60 Q4 .BYTE C/2-8,Q1/84

The result, in memory, when this code is assembled,
would be

ADDRESS CONTENTS
Q1=3%0F0E $0A
SOFOF $10
$0F10 $08
$OF11 $02
Q2=%0F12 $0C
$0F13 $FO
Q3=%0F14 $4F
$0OF15 $53
$0F16 $49
$OF17 $00
Q4=%0F18 $FF
$0F19 $C3
b. .DBYTE
The form is

label .DBYTE operand remarks

This directive causes the assembler to place a two byte
constant into memory. The operand may be a single
expression or several expressions separated by commas.
Character strings in quotes are not allowed.
Example:

10 *=$1E00

20 T=%011D

30 K1 .DBYTE T,T-$§122
40 K2 .DBYTE K1, —1

Assembly of this code would produce the following:

ADDRESS CONTENTS

K1=$1E00 $01
$S1E01 $1D
$1E02 $FF
$1E03 $FB

K2=$1E04 $1E
$1E05 $00
$1E06 $1E
$1E07 $05

c. WORD
The form is

label .WORD operand remarks

The syntax is the same as for .DBYTE. This directive
also produces a two byte constant, but the bytes are
stored in reverse order.

Example:
10 *=$1E00
20 T=%$11D

30 K1 .WORD T,T-122
40 K2 .WORD Ki1,*—1

Notice the operands are the same as the last example.
Assembly would produce

ADDRESS CONTENTS

K1=$1E00 $1D
$1E01 $01
$1E02 $FB
$1E03 $FF

K2=$1E04 $00
$1E05 $1E
$1E06 $05
$1E07 $1E

In 6502 machine language, addresses must be stored in
this “backwards” fashion. For example the three byte
instruction

CMP $17FA

is stored in memory as

$CD operation code
$FA }
$17

address

CHAPTER 4

BUILDING AND EDITING AN ASSEMBLY LANGUAGE
SOURCE FILE

The Assembler is loaded by typing ASSEMBLER (or
ASM) inresponse to the A* prompt in the OS-65D DOS
mode. (This mode is reached by typing EXIT when in
BASIC.) There are several commands that are accepted
by the Assembler/Editor. The Assembler/Editor is
waiting for a command when a period (.) is printed.

automatically inserted into the source file at the place
specified by the line number. If a line is entered with the
same number as a line which is already in the source file,
then the new line replaces the existing line. Line
numbers must be no larger than 65535. Besides entering
a line into the current source file, the user may also use

The user may enter a line into the current source file
by typing a line beginning with a line number. The line is

one of the following editing commands. Each command
may be abbreviated to its initial letter.

RESEQ Resequences all line numbers in the source file. The first line is assigned line number 10 and the line

numbers increment by 10. After the resequence is finished, the next sequential line number is printed.

PRINT Lists all or part of the current source file. PRINT may be used in the following forms:

PRINT lists the entire file

PRINT line lists one line

PRINT first line - last line lists the specified lines

PRINT first line - lists from the specified line to the end of the file

PRINT - last line lists from the beginning of the file to the specified line.
Any number of the above line specifications, separated by commas, can be used with one PRINT
command.
To direct the output to a printer refer to the DOS 10 command the the IO flag bit settings (Appendix L).

DELETE Deletes a line or lines from the file using the same line specifications as PRINT.

INIZ Deletes all lines from the source file. To prevent inadvertently clearing the workspace, the question
“INIZ? (Y/N)” is printed after a line beginning with an “I”” is entered. The user must enter “YES” (or
“Y"™) to complete initialization.

When entering commands or source text lines, correc-
tions can be made to a line anytime before the carriage
return. A back-arrow (or Shift O) can be used to delete

single characters. An up-arrow (or Shift N) can be used
to delete the entire line from the file.

NOTE: CTRL-P toggles device #4 on and off

CHAPTER 5

ASSEMBLY COMMANDS

The Assembler recognizes four assembly commands.
Three of the commands give object code listings, and the
fourth assembles the source to object code in memory,
ready (hopefully) for execution. The commands are:

AO (or A) Gives a full assembly listing. Each line

printed contains:

(1) the line number

(2) the address in memory of the object code

(3) the object code (1-3 bytes)

(4) the source code
If errors are detected in the source, a pointer to the error
and the appropriate error number are printed below the
line with the error. The machine code generated in case
of an error depends on the type of error, but, generally,
is either the appropriate op code byte with a zero
operand or is three NOP bytes. In many cases, this will
result in correct addresses for the rest of the listing. The
next section contains an example of an A0 listing.

A1 Gives an errors-only listing. This command

produces the same output as the full assembly listing but -

for only those lines that contain errors.

A2 Gives an object tape listing in the standard
checksum format. See Appendix K for a description of
checksum format. The user may save this output on tape

by typing
Save <CR> and then
A2 <CR>

(Note: “SAVE” is used only on cassette versions of
assembler. See Appendix L for cassette I/O for disk
machines.)

A3 Puts the object code into memory ready for
execution. This command produces no listing, unless
there are errors.

On disk systems, the M command may be used to change
the place in memory where the object code is placed by
the A3 command. This command does not affect the
object code itself, only where it is put. For example,
suppose the programmer wants to write a program
which will be assembled to memory starting at address
$3290. Thus the source program would have a line
declaring *=$3290. However, an A3 command could
not be executed, because the machine code produced
would overwrite the source code and assembly would
not be completed. This can be remedied by use of the M
command to offset the address for the machine code.
For example, if the programmer types

M1000<CR>

and then
A3<CR>

then the object code produced will be the same as
without the M command, but it will be placed in memory
starting at address $4290. The programmer can then use
the disk command

ISAVE TT,S=4290/N

to save the machine language code, where TT is the
track, S is the sector and N is the number of pages to be
copied to the disk. The code may then (or later) be
recalled to memory at the correct place for execution by
the command

ICALL 3290=TT,S

from the Assembler/Editor or the Extended Monitor or
by

DISK!“CA 3290=TT,S”
from BASIC.

CHAPTER 6

AN EXAMPLE
Suppose the programmer enters the following pro- clearing program using indirect addressing.
gram through the keyboard. The program is a screen
P
10 *=$4000
20 ADDR = $A >
30START LDA ADDR ; save the page 0 locations
40 PHA ; in case this routine is
50 LDA ADDR+1 ; called from BASIC
60 PHA
70 LDA #$D0 ; set up page 0 locations
80 STA ADDR+1 ; for indirect addressing
90 LDA #0
100 STA ADDR
110 LDX #7 ; counter
120 LDY #0 ; register for ind. addressing
130 LDA #32 : blank character in ASCII code
140LOOP STA (ADDR),Y
150 INY
160 BNE LOOP
170 INC ADDR+1 ; after 256 locations incr. page
180 DEX
190 BPL LOOP
200 PLA ; recover the page 0 info
210 STA ADDR+1 ; & put it back
220 PLA
230 STA ADDR
240 RTS
250 .END

Note: On a C1P computer change:

line 90 to LDA #83
line 110 to LDX #3

If the user then enters the A command, the ouput will be:

A
10 4000 *=$4000
20 000A ADDR=$A
30 4000 AS0A START LDA ADDR ; save the page 0 locations
40 4002 48 PHA ; in case this routine is
50 4003 A50B LDA ADDR+1 ; called from BASIC
60 4005 48 PHA
70 4006 ASDO LDA #3$D0 ; set up page 0 locations
80 4008 850B STA ADDR+1 ; for indirect addressing
90 400A A900 LDA #0

100 400C 850A STA ADDR

110 400E A207 LDX #7 ; counter

10

120 4010 A0OQ
130 4012 A920
140 4014 910A
150 4016 C8

LOOP

LDY #0

LDA #32

STA (ADDR),Y
INY

There are no errors in the above assembly.
If, at this point, the A3 command is entered, no output
will result. The assembler will, however, put the
machine code into memory at addresses $4000 through
$4024. If the user (on a disk) system enters

M0800

; register for ind. addressing
; blank character in ASCII code

160 4017 DOFB BNE LOOP
170 4019 E60B INC ADDR+1 ; after 256 locations incr. page
180 401B CA DEX
190 401C 10F6 BPL LOOP
200 401E 68 PLA ; recover the page 0 info
210 401F 850B STA ADDR+1 ; & put it back
220 4021 68 PLA
230 4022 850A STA ADDR
240 4024 60 RTS
250 .END
For example, the third line is
30 4000 A50A START LDA ADDR ; save the page 0 locations
\ |remarks
operand
operation symbol
label
machine language for this line
address of the first byte occupied by this instruction
line number

will be put at addresses $4800 through $4824.

If the user enters the A2 command, the output will be
the following, in checksum format for tape storage. See
Appendix K for a description of checksum format.

; 184000A50A48A50B48 A9D0850B ASDI8SDA A207
ADDDA920910ACED0OOOD4
; 0D4018FBE60BCA10F668850B68850A600670

Assume next that the program is entered as below. Lines
70, 80, 140 and 190 have been changed so that they
contain errors.

; save the page 0 locations
; in case this routine is

; set up page 0 locations
; for indirect addressing

; register for ind. addressing
; blank character in ASCII code

; after 256 locations incr. page

11

and then
A3
the resulting machine code will be exactly the same but
P

10 *=$4000
20 ADDR=$%A
30 START LDA ADDR
40 PHA
50 LDA ADDR+1 ; called from BASIC
60 PHA
70 LDA #D0
80 STA ADR+1
90 LDA #0

100 STA ADDR

110 LDX #7 ; counter

120 LDY #0

130 LDA #32

140 LOOP STA (ADDR,Y)

150 INY

160 BNE LOOP

170 INC ADDR+1

180 DEX

190 BPK LOOP

200 PLA ; recover the page 0 infor
210 STA ADDR+ 1 ; & put it back

220 PLA

230 STA ADDR

240 RTS

250 .END

This time the result of an A command will be:

A
10 4000 *=$4000
20 000A = ADDR = %A
30 4000 AS0A START LDA ADDR ; save the page 0 locations
40 4002 48 PHA ; in case this routine is
50 4003 A50B LDA ADDR+1 ; called from BASIC
60 4005 48 PHA
70 4006 A900 LDA #D0 ; set up page 0 locations
___ A
E# 18
80 4008 8D0100 STA ADR+1 ; for indirect addressing
E# 19
___ A
E# 18
90 400B A9C0 LDA #0
100 400D 850A STA ADDR
110 400F A207 LDX #7 ; counter
120 4011 AQQO LDY #0 ; register for ind. addressing

130 4013 A920
140 4015 EAEAEA LOOP

E# 7

LDA #32
STA (ADDR,Y)

A

; blank character in ASCII code

150 4018 C8 INY
160 4019 DOFa BNE LOOP
170 401B E60B INC ADDR + 1 ; after 256 locations incr. page
180 401D CA DEX
190 401E EAEAEA BPK LOOP
’ A
E# 6
200 4021 68 PLA ; recover the page 0 info
210 4022 850B STA ADDR+1 ; & put it back
220 4024 68 PLA
230 4025 850A STA ADDR
240 4027 60 RTS
250 .END

12

An Al command will give the following:

A1
70 4006 A900 LDA DO ; set up page @ locations
_A
E# 18
80 4008 8D0O100 STA ADR+1 ; for indirect addressing
_____ A
E# 19
________ A
E# 18
140 4015 EAEAEA LOOP STA (ADDR)Y)
e e e i B e A
E# 7
L 190 401E EAEAEA BPK LOOP
.. A
E# 6

13

CHAPTER 7

RUNNING A MACHINE LANGUAGE PROGRAM

After an assembly language source program has been
assembled to memory by the A3 command or a machine
language program has been called into memory from
disk or tape, there are several options for running and
testing. The most powerful debugging tool is the
Extended Monitor, which is described in the next
section. The procedure for interfacing a machine
language program with a BASIC program is also
discussed in Chapter 9.

A. PROM MONITOR-CASSETTE
BASED SYSTEMS

On a cassette based system, the user may exit from the
Assembler/Editor and enter the machine language
Monitor in ROM by typing <BREAK> and then

M

A machine language program in memory may then be
run by typing the entry address and then

G

The user may return from the Monitor in ROM by
typing
1300 G

provided memory from addresses $0240 through $1390
has not been altered. The Monitor in ROM commands

14

are discussed more completely in Appendix I.

B. DOS KERNEL-DISK BASED
SYSTEMS

On a disk based system, the user may type
EXIT (or E)

to enter the DOS kernel and then type
GO XXXX

where XXXX is the entry address of the machine
language program in hex. If the user’s program ends
with ain RTS then control will revert to the DOS kernel.
(When in the DOS, the A* prompt appears.)

C. PROM MONITOR-DISK BASED
SYSTEMS

Also a disk system, the user may exit to the Monitor in
ROM by typing
EXIT

and then
RE M

The user may return from the Monitor in ROM to the
DOS kernel by typing .2547 G.

CHAPTER 8

THE EXTENDED MONITOR

The 6502 Extended Monitor is an extensive machine
code debugging aid. It includes the following commands
for

- memory display and modification
memory display and change
memory dump
memory fill
memory move
memory relocate

- program debugging
disassembly
search for a byte string
search for a character string
breakpoint installation and control
processor register display and change
program execution

- audio cassette input/output
load
save
view

- hexadecimal arithmetic
calculate
display overflow/remainder

LOADING THE EXTENDED MONITOR

The method for loading the Extended Monitor
depends upon which version you are using. Refer to the
appendix appropriate to your system (Appendix G or
H).

After the Extended Monitor has been loaded, its
prompter, a colon (:), is displayed. This is the Extended
Monitor’s command mode.

A. THE EM COMMANDS

Each of the Extended Monitor commands is listed
below. Any of these commands may be entered
whenever you are in the command mode as indicated by
the colon prompter. Many of the commands also have

subcommands which can be entered only after the
primary command has been entered. If an invalid
command is entered, a “?” will be printed.

In the command descriptions below, all addresses and
data values are hexadecimal and the following abbre-
viations or special characters are used:

MEANING
<LF> the line feed key on the keyboard
<CR> the carriage return (or return) key on
the keyboard
i an up arrow character. Maybea 1,/\
or a shift/N on some keyboards
@ a commercial-at character. May be a

shift/P on some keyboards

MEMORY DISPLAY AND MODIFICATION COM-
MANDS
@aaaa displays the address and contents
of the location aaaa. New contents
may or may not then be entered
(two hex digits) followed by one of

the following:

displays the next location

0 displays the previous location

/ displays the same location

e prints the contents of the location
as an ASCII or graphic character
exits to the Extended Monitor
command mode

<CR>

dumps the contents of memory
locations ffff through tttt-1.

Dffit, tttt

fills memory locations ffff through
tttt-1 with the value dd.

Fffff, tttt =dd

moves the contents of memory
from locations ffff through tttt-1 to
the memory starting at location
aaaa.

NOTE: The distance of an upward

Maaaa = ffff, tttt

Raaaa = ff¥f, tttt

move must be greater than the
length of the move or data in the
original locations will be overwrit-
ten (aaaa> =tttt or aaaa< ffff).

relocates (moves the contents of
memory from locations ffff
through tttt-1 to the memory start-
ing at location aaaa and appropria-
tely adjusts all three-byte 6502
instruction operand addresses that
refer to locations within the range
of the move. (Adds (aaaa-ffff) to
each operand address that is
> =ffff and <=tttt-1).

Note: The Distance of an upward
move must be greater than the
length of the move or data in the
original locations will be overwrit-
ten (aaaa> =tttt or aaaa<ffff).

PROGRAM DEBUGGING COMMANDS

Qfftf

Ndd. . .dd>{fff, tttt

‘We. . .c>fiff, tttt

Bn,aaaa

disassembles 6502 machine code
into 6502 mnemonic code from
memory location ffff up. Disas-
sembly continues for a total of 24
lines—a maximum of 72 bytes. At
completion, it awaits,

<LF> disassembles the next 24
lines, or

<CR> exits to the Extended
Monitor command mode

searches the contents of memory
locations ffff through tttt-1 for the
string of 1 to 3 data bytes dd. . .dd.
If the string is found then the
address of the first byte of the first
occurrence of the string is dis-
played and the @ mode is entered.

searches the contents of memory
locations ffff through tttt-1 for the
string of 1 to 6 ASCII characters
c. . .c. If the string is found then
the address of the first byte of the
first occurrence of the string is
displayed and the @ mode is
entered.

installs breakpoint n (n = 1-8) at
address aaaa. The contents of
location aaaa is saved and may be

16

En

Gaaaa

AX,Y,PK

<CR>

restored with the En command. If
breakpoint n had previously been
assigned it is first restored. When a
breakpoint is “‘hit”’ during program
execution it is also automatically
restored. (See Using Breakpoints
for Program Debugging)

eliminates breakpoint n (n = 1-8)
and restores the original contents
of the location where it was locat-
ed.

goes (transfers program control) to
address aaaa.

prints a table of breakpoint ad-
dresses for each breakpoint 1
through 8. An address of FFFF
indicates an unassigned break-
point.

continues program execution from
the location of the last breakpoint.
This command must only be used
after a breakpoint has been “hit.”
The byte that was replaced by the
breakpoint (and restored when the
breakpoint was hit) is executed
first.

prints the address of the last
breakpoint “hit” and the contents
of the A, X, Y, processor status (P)
and stackpointer (K) registers as
they existed at that breakpoint.

these five commands print the
contents the associated register.
New contents may or may not then
be entered (two hex digits) fol-
lowed by one of the following:
prints the contents of the register as
ASCII or graphic character

exits to the Extended Monitor
command mode

AUDIO CASSETTE COMMANDS

SEETE, ttet

saves the contents of memory
locations ffff through tttt-1 by
writing them to the cassette port
(as well as the terminal) in check-
sum format. This function may be
terminated by typing “L” and a

space. See Appendix K for a
description of checksum format.

L loads into memory the data read
from the cassette port in checksum
format. If a checksum error is
detected, “ERR” is printed. To
recover, stop the cassette machine,
rewind the tape a short distance
and restart playing it. Type an “L”
to restart the loading. The LOAD
command can be exited at any time
by typing a space.

v view the data read from the cas-
sette port in checksum format.
Same as Load, above, but displays
the data without modifying memo-

ry.

CALCULATOR COMMANDS

Hxxxx,yyyy + calculates the sum of the hexadeci-
mal values xxxx and yyyy and
prints the result.

Hxxxx,yyyy — same as above for difference.

Hxxxx,yyyy* same as above for product.

Hxxxx,yyyy/ same as above for quotient.

(0] prints the overflow or remainder

from the last multiplication or di-
vision performed with the H com-
mand.

NOTE: at most 17 characters per
command line are allowed.

B. THE R AND M COMMANDS

The M command moves the contents of one area of
memory to another area, without change. The R
command moves memory and changes the contents of
those locations which can be interpreted to be the
address portion of a three byte machine language
instruction. This address portion is changed only if the
address lies within the range of the move. For example,
consider the following sequence of instructions residing
at address $0800 through $0810:

ADDRESS INSTRUCTION
$800 LDA $2000
$803 JSR $809

17

$806 JMP $1000
$809 LDX $810
$80C STA $D740,X
$80F RTS

$810 .BYTE $A

If the command
MOAQD =0800,0811

is executed, then the machine code for these instructions
is moved unchanged to memory address $0A00 through
$0A10. If the command

ROAQQ=0800,0811

is executed, then the code is moved to locations QA0
through @A10 and becomes

ADDRESS INSTRUCTION
0A00 LDA $2000
0A03 JSR $A09
0AD6 JMP $1000
0A09 LDX $A10
DAOC STA $D740,X
0AQF RTS
0A10 .BYTE $A

For the LDX and JSR instructions, the address part of
the instruction is changed, because the two addresses
involved ($809 and $810) are in the range of the move (in
this case between 0800 and 0811). For the remaining
three byte instructions, the address is not changed. If an
operand is changed, then it is changed by the amount of
the move, that is, if

Raaaa = ffff,tttt

is executed then

New operand = old operand + (aaaa — ffff)
The use of the R command may cause problems if some
of the locations that are relocated do not contain
machine language instructions, but contain data. For
example, if the following three bytes appear as datain a
program at addresses $810 through $812:

.BYTE $AD
.BYTE $7
.BYTE $8

and the command
ROAD8 = 0800,0820

is executed, then the contents of these three bytes may
be interpreted to be the machine language for the
instruction LDA $807. Then the R command would
change these to

.BYTE $AD
.BYTE $F
.BYTE $A

One way to prevent this is to use the R command to
relocate the entire program and then use the M
command on the bytes that contain data, to correct any
mistakes like the above.

C. BREAKPOINTS AND DEBUGGING

As the name implies, a breakpoint is a point where
the execution of a running program may be “broken” or
interrupted. Using the Extended Monitor, up to eight
breakpoints may be placed into a program. When the
program is run (executed) and a breakpoint is encoun-
tered, the Extended Monitor is re-entered and prints the
following to document the breakpoint:

Bn@aaaa
A/aa Xixx Yiyy P/pp K/kk

n is the breakpoint number 1-8

aaaa is the location where the breakpoint was
encountered

aa is the contents of the accumulator

xx is the contents of the X index register

yy is the contents of the Y index register
pp is the contents of the processor status word
kk is the contents of the stackpointer

To illustrate the use of a breakpoint, consider the
following program:

where:

100 *=$4000

120 START LDA #101
140 LDX #2

160 STA $D290,X
180 DEX

200 BNE *—4
220 STA $D29C
240 RTS

When this program is executed, it will print two lower
case ¢'s at the left margin of the screen and another near
the center. An assembly listing (assembler A command)
yields:

A
100 4000 $=5$4000
120 4000 A965 START LDA #101
140 4002 A202 LDX #2
160 4004 9D90D2 STA $D290,X

180 4007 CA DEX

200 4008 DOFA BNE *—4
220 400A 8D9CD2 STA $D29C
240 400D 60 RTS

Assuming the user is working with the Assembler/Edi-
tor, the program may now be assembled to memory by
the A3 command. The Extended Monitor may now be
entered (on disk systems) by the command

IRETURN EM (or |RE EM)
The computer will respond
EM V2.0

If the user now enters

B1, 4007
B2, 4008
B3, 400D

then three breakpoints will be installed in the program.
The T command will produce the following listing:

B1,4007
B2,4008
B3,400D
B4,FFFF
B5,FFFF
B6,FFFF
B7,FFFF
B8,FFFF

Note: When you exit and re-enter EM, all breakpoints
are initialized.

If the command
G4000

is entered, one “e” will be printed on the screen and the
Extended Monitor will print

B1@4007
A/65 X/02 Y/FF P/7D K/FF

indicating that breakpoint #1 has been hit and also the
status of the five registers when the breakpoint was
encountered. The breakpoint B1 has now been removed
and the DEX instruction has been put back into the
program. If the C command is now entered, the program
will continue execution of just one instruction, the
DEX, the next breakpoint will be hit and the Extended
Monitor will print

B2@4008
A/65 X/01 Y/FF P/7D K/FF

If the C command is entered again, then two more €’s
will appear and the Extended Monitor will print

B3@400D
A/65 X/00 Y/FF P/7F K/FF

All breakpoints have now been eliminated. If the user
now enters

B1,400D

and then

X

the Extended Monitor will respond with

/00

which is the contents of register X at the time the last
breakpoint was hit. If the user now types

0A

then that will be the contents of the X register when
execution is resumed. If the user now types

G4004

(1P P b]

then eleven “e’s” will appear on the screen and the
Extended Monitor will print:

B1@400D
A/65 X/00 Y/FF P/7F K/FF

The programmer can also change the flow of execution
of the program. For example, if the user now enters

B1,4008
B2,400D
G4000

the Extended Monitor will respond

B1@4008
A/65 X/01 Y/FF P/7D K/FF

If the user now enters the C command, execution of the
program will resume and the branch back to

STA D290,X

will be executed. If instead the programmer types

19

P

then the Extended Monitor will respond
/7D

which is the contents of the Processor Status Word at the
time the breakpoint was hit. If the user now types

7F

this will be the contents of the Processor Status Word
when execution resumes. Specifically, the Z flag will be
set so that no branch takes place. Hence, if the C
command is entered, one more e will appear on the
screen, and the Extended Monitor will print

B2@400D
A/65 X/01 Y/FF P/7F K/FF

USING THE EM AND THE ASSEMBLER/EDITOR
SIMULTANEOUSLY

On disk based systems, the Extended Monitor and
the Assembler/Editor are always loaded into memory
simultaneously. The user may go from one to the other
by typing

IRE AS or !RE EM

The Extended Monitor and Assembler/Editor (on disk
systems) occupy memory from $0200 through $16FF.
The Extended Monitor uses page 0 locations $CO
through $FF.

CHAPTER 9

INTERFACING WITH BASIC

There are several methods that can be used to call a
machine language routine from a BASIC program. If a
routine is stored on disk at track TT and sector S, then a
BASIC program may contain the statement

DISK!"CA XXXX=TT,S"

to bring the machine code into memory to hexadecimal
addresses XXXX. The user should take precautions to
avoid having a running BASIC program change memory
locations occupied by his machine language subroutine,
and not to bring in machine code onto your BASIC
program. Beginning at $327E, in the workspace, the
BASIC program and numeric variables are stored,
however, string variables are stored at the end of
memory so that the end of memory may not be a “safe”
place for a machine language subroutine. The user can
create a safe place by running the BASIC utility
CHANGE.

A. THE USR FUNCTION

The user can cause a BASIC program to branch to
any location in memory in exactly the same fashion that
BASIC’s built-in functions (like ABS, RND, SIN) are
called. The appropriate form is

Y =USR(X)

where Y can be any arithmetic variable and X can be
replaced by any arithmetic expression. The address of
the entry point into the user’s routine must be POKEd
into memory locations 574 (=23E hex) and 575 (=23F
hex). The low order byte of the address goes to 574 and
the high order byte to 575. (This is the standard 6502
method of storing addresses backwards.)

When Y = USR(X) is executed, control passes to the
POKEd address via a JSR and the value of X (or
whatever the argument) is loaded into the Floating
Accumulator, which is on page @ at addresses $AE
through $B3. See appendix M for the format of numbers
in the Floating Accumulator. This is all that is done by
BASIC and nothing is stored at Y unless the user’s
routine does it. The value in the Floating Accumulator,
in floating point format, can be converted to a 16 bit
integer (in two’s complement if negative) by calling the

20

routine whose address is stored at addresses $0006 and
$0007. This can be done, for example, by

LDA 6

STA CALL+1

LDA 7

STA CALL+2
CALL JSR $FFFF

This routine will put its answer at $AE and $ AF with the
high order byte of the answer at $AE. If the user wants
to store an answer at Y (assuming Y = USR(X) is in the
BASIC program) then this 16 bit value should be put in
the Y register (low byte) and the A register (high byte)
and then the routine whose address is stored at $0008
and $0009 can be called.

B. DISK!“GO XXXX”

On disk based systems, a BASIC program may call a
machine language subroutine by this statement, where
XXXX is the entry address, in hex, of the machine
language routine. The routine must end with an RTS.
Parameters can be passed to such a routine (or a routine
accessed by the USR function) using POKEs.

C. DISK!“XQT NNNNNN”

This command loads the disk file named NNNNNN to
address $3279 up and then executes a JMP to $327E.
Thus the program should be assembled to start at $327E.
Header and track length information are stored at
$3279-$327D. NNNNNN can be the name of a disk file
or a track number. Since $327E is the beginning of
workspace for assembly language programs, the pro-
grammer must offset the assembly to avoid destroying
the source code during assembly. In addition, to allow
the program to be stored on disk, the user must put, at
address $327D, the number of tracks required to hold
the machine language program. (One track holds 2040
bytes.) For purposes of example, let us assume the
assembled program will use $200 (=512 decimal) bytes
of memory and that the Assembler/Editor command

M1000 will cause the assembler to assemble the code
without running into the source program in the
workspace. The following sequence of commands will
set up the disk file ready for a DISK!“XQT NNNNNN"
command in a BASIC program. The user’s input is
underlined. We assume the program is in the workspace.

.M1000

A3

.\RE EM

21

EM V2.0

‘M 327E = 427E 447E
:@327D

327D/dd 01_
IPUT_NNNNNN

*Note: This discussion assumes that the workspace
starts at $327E, which is correct for minifloppies. For
eight inch floppies substitute $317E and subtract $100
from the above locations.

APPENDIX A

ASSEMBLY ERRORS

The following descriptions of assembly errors and
their possible causes are provided to facilitate elimina-
tion of these errors in an assembly.

1) A, X, Y, S and P are Reserved Names
One of these reserved names was found in the label
field. No code is generated for a statement with a
reserved name as a label. Use of a reserved name in
an expression will give an “‘undefined label” error,
error 18.
2) There isn’t any.
3) Address Not Valid
An address greater than 65535 (hex FFFF) was
encountered.
4) Forward Reference In Equate, Origin or Reserve
Directive
An expression used in one of these directives
includes a label that hasn’t been previously defined
in the assembly source file.
. 5) Illegal Operand Type For This Instruction
An operand was found which is not defined for the
specified instruction opcode. Refer to Appendix B
for the defined instruction addressing modes.
| 6) Illegal or Missing Opcode
| A defined opcode was not found. Refer to
| Appendix B for the defined opcodes.
| 7) Invalid Expression
| An expression was found that is not a valid
\I sequence of numerical constants and/or labels
separated by valid operators or is not a valid
instruction operand form.
8) Invalid Index—Must Be X Or Y
| An indexable instruction was found with an invalid
index. Refer to Appendix B.
9) Label Doesn’t Begin With Alphabetic Character
A non-alphabetic character was encountered where
a label was expected.
10) Label Greater Than Six Characters
A string of more than six valid label characters
(A-Z,0-9, 8, ., :) was found before a non-valid label
character. This is a warning message. Assembly
continues using the first six characters of the label.
11) There isn’t any.
12) Label Previously Defined
The identified label has previously occurred in the
assembler source file or this occurrence of the label

had a different value on pass one than on pass two.
The latter error may be caused by previous errors in
the assembly.

13) Out Of Bounds On Indirect Addressing
An indirect-indexed or indexed-indirect address
does not fall into page zero as required.

14) There isn’t any.

15) Ran Off End Of Line
An operand is required and wasn’t found before the
end of the line.

16) Relative Branch Out Of Range
The target address of a branch instruction is farther
away than the minus 128 to plus 127 byte range of
the instruction permits.

17) There isn’t any.

18) Undefined Label
The identified label is not defined anywhere within
the assembler source file.

19) Forward Reference To Page Zero Memory
This warning message is generated when an
instruction that has both page zero and absolute
addressing modes has an operand that is defined
later in the assembly source file to be a page zero
address. During pass one of the assembly, two bytes
are allocated for the operand since its value is not
yet known. Then during pass two, the operand is
found to require only a single byte so one byte is
wasted. This is usually not a serious error because
the generated code will generally execute as
expected.

20) Immediate Operand Greater Than 255
An immediate operand expression evaluated to
greater than 255, the maximum value that can be
represented in a single byte immediate operand.

21) There isn’t any.

22) There isn’t any.

23) There isn’t any.

24) There isn’t any.

25) Label (Symbol) Table Overflow
The size of the workspace is insufficient to hold the
current source file and a table for all of the labels
encountered in the program. To assemble will
require a reduction in either the size of the program
source file or the number of symbols or an increase
in the size of the workspace.

APPENDIX B

6502 INSTRUCTION ADDRESSING MODES

ASSEMBLER
ADDRESSING
MODES AC | IM DIRECT INDEXED INDIRECT
MACHINE LAN-
GUAGE A [T Zol AR CZ A A T I I
ADDRESSING
MODES Coal M | B b € P b) b n n n
s 1 S S
b Gl | S R S) e S 0
GENERAL ADCIAND|CMP|EOR
LDAWORA(SBC X| X | X X=|5X X| X | X
SHIFT ASL|LSR |ROLIROR | X X | X' X | X
BIT
TEST BIT X | X
ICOMPARE
INDEX CPX CPY X| X | X
DECREMENT/
INCREMENT DEC INC b, [§5.4 X | X
JUMP JMP X X
JSR X
LOAD LDX b, GBI, T 55 ¢ X=X
INDEX LDY X| X | X X 4
STORE STX X=X X
INDEX STY X | X X
STORE STA X | X X | X X| X | X
BRANCH BCC|BCS |BEQ|BMI
BNE|BPL |BVC|BVS X
IMPLIED BRK|NOP| RTI |RTS Implied
CLC|CLD| CLI |CLV (No Operand)
DEXDEY|INX |INY
PHA |PHP |PLA |PLP
SEC |SED | SEI
TAX[TAY|TSX
TXATYA|TXS
AC—Accumulator Abs—Absolute
IM—Immediate Rel—Relative
ZP—Zero Page In—Indirect

23

APPENDIX C

ASSEMBLER/EDITOR STATISTICS

Source File Storage Requirements (per line):

Two bytes for the line number plus,
one byte for each text character plus,
one byte for the line terminator character (0D).

All repeated characters such as a sequence of spaces
occupy only two bytes; one for the character and one for
a repeat count.

Symbol Table Storage Requirements:

Six bytes/symbol.
6502 opcodes and reserved names occupy no
symbol table space.

Assembly Speed:
Approximately 600 lines per minute.

24

APPENDIX D

0S-65D V3.N VERSION OF THE 6502 ASSEMBLER/EDITOR

In OS-65D V3.N, the Assembler/Editor is loaded
from disk and initiated by typing ASM after the A*
prompter in the DOS kernel command mode. When-
ever exiting to the DOS, you can return to the
Assembler/Editor as long as it is loaded by typing
RETURN ASM (or RE ASM).

This version of the 6502 Assembler/Editor contains
the following commands in addition to those described
elsewhere in this manual.

Exit exits the Assembler/Editor and
transfers control to the OS-65D
kernel which then displays the A*
prompter.

Hnnnn sets the high memory limit to

hexadecimal address nnnn.

sets the memory offset for A3
assemblies to hexadecimal nnnn.

Mnnnn

tabs 8 spaces from the current print
position. Also:

CONTROL-U 7 spaces
CONTROL-Y 6 spaces
CONTROL-T 5 spaces
CONTROL-R 4 spaces
CONTROL-E 3 spaces

Control-I

Control-C aborts the current operation.
sends the command line to OS-65D
to be executed, then returns to the
Assembler.

!Command Line

25

This version of the Assembler/Editor occupies memory
from 0200 through 16FF. Its workspace starts at 3179
(3279 in mini-floppy versions) and is utilized as shown
below: -

3179,317A address of start of source (low,
high)—normally 317E

317B,317C address of end of source +1 (low,
high)

317D number of tracks required for source

317E normal start of source

Note: It is possible to carry the Assembler’s symbol
table forward from one assembly to another. To do so,
exit the Assembler after the first assembly and enter the
machine language monitor by typing “RE M”. Change
location 0855 from QA to 18 and read out the contents of
locations 2F83 and 2F84. Enter the values from these
locations into locations 12FA and 12FB, respectively.
Then re-enter the Assembler by re-entering the DOS
kernel at 2547 and typing “RE AS.” Now the symbols
from the first assembly will remain in the symbol table for
reference during the next assembly. Likewise, the
symbols from the first and second assemblies will remain
for the third assembly, etc. If you want to eliminate all but
the symbols from the first assembly, exit the Assembler
and immediately re-enter it by tying “RE AS.” To restore
normal operation of the Assembler, change location 0855
back to OA. This will cause the symbol table to be cleared
at the beginning of each assembly.

APPENDIX E

CASSETTE VERSION OF ASSEMBLER/EDITOR

This version of the Assembler/Editor is supplied on
an auto-load cassette tape. The following procedure
may be used to load the Assembler from tape:

LOADING THE ASSEMBLER/EDITOR

1) Apply power to your personal computer then
reset it by depressing the <BREAK> key.
Load the cassette, label up, into the cassette
machine and turn the cassette machine on with
the volume at about mid-range.

2) Type “ML".

The M initiates the 65VP monitor and the L
starts the auto-load. In a few seconds the four
zeros in the upper left portion of the video
monitor should change to an incrementing
address value with a rapidly changing data
field. The value of the address is dependent on
which auto-load cassette is being read. At this
time, a checksum loader is being read into
memory in 65VP format. Upon completion (no
more than 30 seconds), the checksum loader
will load the rest of the cassette. The Assembler
comes up with the message INIZ? (Y/N).
Should a checksum error occur, the following
message is printed:
OBJECT LOAD CHECKSUM ERR

REWIND PAST ERR—TYPE G TO
RESTART

If a checksum error consistently happens at the
same location, the cassette is probably bad.
Contact your OSI dealer concerning replace-
ment. However, should checksum errors occur
randomly, at various locations, it is most likely
that there is a problem with the cassette
machine or the connection to the computer.
Check for broken or frayed connections. Make
sure the playback head and pressure roll-
er/capstan assembly is clean. With a minimal
amount of care, no problems with auto-load
cassettes should be encountered.
The cassette version of the Assembler/Editor permits
loading and saving source codes in a manner similar to
ROM BASIC.

26

TO SAVE SOURCE CODE

Type “SAVE’ <CR> (carriage return), type
“PRINT” <line specification>, turn on the cassette
machine in record mode and hit <CR>. As in ROM
BASIC, the SAVE mode is disabled by typing “LOAD”
<CR> followed by a space.

TO LOAD PREVIOUSLY RECORDED
SOURCE CODE

Turn on cassette machine in play, type “LOAD”,
wait for leader to pass, then hit <CR>. The LOAD
mode is disabled by hitting a space.

This version of the Assembler/Editor also provides
the following commands:

EXIT—causes the computer to execute its reset vector
and display “C/W/M?”’. Great care must be taken never
to type “C”, as this will destroy the Assembler/Editor.
The Assembler/Editor may then be re-entered by typing
“M 1300 G”.

CONTROL-I—tabs 8 spaces from the current cursor
location.

The above commands, as all other Assembler/Editor
commands, may be executed by typing the first letter
only.

This version of the Assembler/Editor occupies
memory from 0240 through 1390 (hexadecimal) and
requires a minimal total of 8K of memory to operate. Its
source file workspace starts at 1391 and ends at 1FFF, as
supplied. The entry location is hex 1300. While running,
all of page zero is used. However, you can exit the
Assembler/Editor-use page zero and re-enter it by
typing “M 1300 G”.

The following locations may be changed in the
cassette version of the Assembler/Editor to suit your
requirements:

12C9,12CA—the low, high memory address of the start
of the source file workspace. 1391 hex, as supplied.

12CB,12CC—the low, high memory address of the end
of the source file workspace. 1FFF, as supplied.

12FC,12FD—the low, high memory offset used to bias

placement of object code during an A3 assembly. @, as
supplied.

12FE,12FF—the low, high address of the next available
source file storage location. These locations are
initialized to the address of the start of the workspace by
the INIZ command and, thereafter, are automatically
updated by the Editor.

It is possible to carry the Assembler’s symbol table
forward from one assembly to another. To do so, exit the
Assembler after the first assembly and enter the
machine language monitor by “M”. Change location
0855 from QA to 18 and read out the contents of locations

27

000A and 000B. Enter the values from those locations
into locations 12FA and 12FB, respectively. Then
re-enter the Assembler by typing “.1300G”. Now the
symbols from the first assembly will remain in the
symbol table for reference during the next assembly.
Likewise, the symbols from the first and second
assemblies will remain for the third assembly, etc. If you
want to eliminate all but the symbols from the first
assembly, exit the Assembler and immediately re-enter
it by typing “M1300G". To restore normal operation of
the Assembler, change location 0855 back to OA. This
will cause the symbol table to be cleared at the beginning
of each assembly.

COMMAND

AX, Y, Por K

Bn,aaaa

C

DRI, tttt

En

Fffi, tttt = dd
Gaaaa
Hxxxx,yyyy +

I

L

Maaaa = fff¥, ttt
Ndd...dd>fff¥, ttte

0

Qaaaa

Raaaa = ffff, tttt
SEEEE, tett

: 3

v
WC...c>fIf, ittt

APPENDIX F

EXTENDED MONITOR COMMAND SUMMARY

FUNCTION

display contents of aaaa

display A, X, Y, P or K from last
break

A, X, Y—processor register
P—processor status
K—stackpointer

enter breakpoint n at aaaa
continue from last breakpoint
dump ffff through tttt-1

eliminate breakpoint n

fill ffff through tttt-1 with dd

go to aaaa

display xxxx+ yyyy

display location of last breakpoint
load memory from cassette

move ffff through tttt-1 to aaaa

search ffff through tttt-1 for
dd...dd

display overflow/remainder from
last H command

disassemble from aaaa

relocate ffff through tttt-1 to aaaa
save ffff through tttt-1 to cassette
display breakpoint table

view from cassette

search ffff through tttt-1 for
CiriC

28

SUBCOMMANDS
(<CR> ALWAYS RETURNS TO ¢:”%)

dd—change aaaa (dd=two hex digits)
"—display as character
<LF>—display next location

1 —display previous location
/—display same location

dd—change register
"—display as character

(n = 1-8)

(also —, *, /)

SPACE key returns to ‘““:”

(dd...dd is 1-8 bytes)

<LF> continue disassembly

SPACE key returns to “:”

(c...c is 1-8 characters)

APPENDIX G

0S-65D V3.N VERSION OF THE EXTENDED MONITOR

In OS-65D V3.N, the Extended Monitor is loaded Monitor as long as it is loaded by typing RETURN EM.
from disk and initiated by typing EM after the A* This version of the Extended Monitor occupies
prompter in the DOS kernel command mode. When- memory from 1700 through 1FFF and uses page zero
ever exiting to the DOS, you can return to the Extended locations C0 through FF.

29

APPENDIX H

CASSETTE VERSION OF EM

This version of the Extended Monitor is supplied on
an auto-load cassette tape. The following procedure
may be used to load the Extended Monitor from tape:

LOADING THE EXTENDED MONITOR

1) Apply power to your personal computer then
reset it by depressing the <BREAK> key.
Load the cassette, label up, into the cassette
machine and turn the cassette machine on with
the volume at about mid-range.

2) Type “ML.

3) The M initiates the 65VP monitor and the L
starts the auto-load. In a few seconds the four
zeros in the upper left portion of the video
monitor should change to an incrementing
address value with a rapidly changing data
field. The value of the address is dependent on
which auto-load cassette is being reared. At this
time, a checksum loader is being read into
memory in 65VP format. Upon completion (no
more than 30 seconds), the checksum loader
will load the rest of the cassette. The Extended
Monitor comes up with the prompter‘:”.
Should a checksum error occur, the following
message is printed:

OBJECT LOAD CHECKSUM ERR
REWIND PAST ERR—TYPE G TO
RESTART

If a checksum error consistently happens at the
same location, the cassette is probably bad.
Contact your OSI dealer concerning replace-
ment. However, should checksum errors occur

randomly, at various locations, it is most likely
that there is a problem with the cassette
machine or the connection to the computer.
Check for broken or frayed connections. Make
sure the playback head and pressure roll-
er/capstan assembly is clean. With a minimal
amount of care, no problems with auto-load
cassettes should be encountered.
This version of the Extended Monitor contains one
additional instruction for dumping the contents of
memory on the 24 character 1P video screen:

COMMAND
Zaaaa

FUNCTION
dumps 8 bytes from aaaa

SUBCOMMAND
<LF> dumps next 8 bytes

This version occupies memory from 0800 through
OFFF and uses page zero locations D0 through FF. The
checksum loader used to load the Extended Monitor
occupies locations 0700 through 07EF.

This version of the Extended Monitor is normally
entered at 0800. This causes the stackpointer to be set to
P1FF and the breakpoint registers to be initialized.
Under certain circumstances, it may be desirable to
re-enter the Extended Monitor without this initializa-
tion. This may be done by entering it at 081F.

There are two free command letters—J and U, that
can be utilized by inserting the address of a command
routine at 0974 for J or 098A for U. The machine
language command routine must end with an RTS
instruction.

APPENDIX |

ROM MONITOR COMMANDS

In the cassette version, the ROM Monitor is entered
by typing <BREAK> and then M. If BASIC, the
Assembler/Editor, or the Extended Monitor is in
memory when <BREAK> is hit, then the user may
return to it by typing <BREAK> and then W.

On disk systems, the user can also enter the ROM
Monitor by typing <BREAK> and then M, but, if thisis
done, then re-entry to BASIC, the Assembler/Editor, or
the Extended Monitor is usually impossible. However,
the disk based user may also enter the ROM Monitor by
typing “EXIT” and then “RE M”. The DOS kernel may
then be re-entered by typing .2547G <CR>. The ROM
Monitor begins at address $FE00.

The ROM Monitor has four command modes:

1) Addressing Mode
When an address is typed, the address and the
contents of that address are displayed. If the Monitor
is not in the Addressing Mode then it may be entered

by typing a period (.).

2) Data Entry Mode
Hexadecimal data may be put into the memory
location whose address is displayed. This mode is

31

entered by typing /. When in this mode, a <CR> will
increase the displayed address by one.

3) Go Mode
If the Monitor is in the Addressing Mode, then typing
a G will cause the Monitor to execute a JMP to the

address currently displayed.

4) Cassette Loader Mode

If in the Addressing Mode, typing L permits the
loading of programs from cassette. Upon typing L, all
ASCII commands are accepted from the audio

cassette input port rather than the keyboard.

Some addresses associated with the monitor ROM are

FEQ0—Start of Monitor (restart location)
FEQC—Restart with clear screen and no other
initialization

FE43—Entry to Addressing mode

FE77—Entry to Data mode

A complete listing of the monitor ROM may be found in
the Appendix of the OSI 65V Primer.

APPENDIX J
ASCIl CHARACTER CODES

CODE CHAR CODE CHAR CODE CHAR
| 0] NUL 2B - 56 v
| @1 SOH 2C mi o 57 w
| 02 STX 2D - 58 X
@3 ETX 2E 2 59 Y
@4 EOT oF / 5A z
@5 ENQ 30 [} 5B [
06 ACK 31 1 5C /
@7 BEL 32 2 5D]
08 BS 33 3 5E A
09 HT 34 4 5F
0A LF 35 5 60 (Blank)
?B VT 36 6 61 a
@C FF 37 ¥ 62 b
@D CR 38 8 63 c
QE SO 39 9 64 d
@F Sl 3A ; 65 e
| 10 DLE 3B : 66 f
| did DCA1 3C < 67 g
12 DC2 3D = 68 h
13 DC3 3E > 69 i
14 DC4 3F ? 6A j
15 NAK 40 @ 6B k
16 SYN 41 A 6C I
17 ETB 42 = 6D m
18 CAN 43 C 6E n
19 EM 44 D 6F)
1A SUB 45 E 70 p
1B ESC 46 F 71 q
1C FS 47 G 72 r
1D GS 48 3! 73 s
1E RS 49 | 74 t
1F us 4A J 75 u
20 SP 4B K 76 v
21 ! 4AC L 77 w
22 v 4D M 78 X
23 # 4E N 79 y
24 $ 4F 1) 7A z
25 % 50 P 7B {
26 & 51 Q e }
27 ' 52 R 7D |
28 (53 S 7E &
29) 54 T 7F DEL
2A . " 55 U

32

APPENDIX K

CHECKSUM FORMAT

The checksum format is as follows for each “record” of data:
;18aaaadd...ddccce

where:
7 is the start of record character
18 is the hexadecimal number of data
bytes in the record (24 decimal)
aaaa is the address of the first data byte in

the record
dd...dd are the 24 data bytes
ceee is the checksum—a sum modulo

65536 of all bytes in the record after
10 the start of record character

33

APPENDIX L

0S-65D DISK OPERATING SYSTEM

COMMANDS
ASM Load the assembler and extended monitor. Transfer control to the assembler.
BASIC Load BASIC and transfer control to it.
CALL Load contents of track “TT”,
NNNN=TT,S sector “‘S,” to memory location “NNNN”.
D9 Disable error 9. This is required to read some earlier version files (V1.5, V2.0).
DIR NN Print sector map directory of track “NN™.
EM Load the assembler and extended monitor. Transfer control to the extended
monitor.
EXAM NNNN=TT Examine track TT. Load entire track contents, including formatting formation,
into location “NNNN”.
GO NNNN Transfer control <GO> to location “NNNN”.
HOME Reset track count to zero and home the current drive’s head to track zero.
INIT Initialize the entire disk, i.e., erase the entire diskette (except track 0) and
write new formatting information on each track.
INIT TT Same as “INIT”, but only operates on track “TT”.
. IO NN, MM Changes the input I/O distributor flag to “NN”, and the output flag to “MM".
' See the table at the end of this appendix for I/O flag settings.
[I0, MM Changes only the output flag.
‘ IO NN Changes only the input flag.
LOAD FILNAM Loads named source file, “FILNAM” into memory.
| LOAD TT Loads source file into memory given starting track number “TT".
i‘ MEM Sets the memory I/O device input
\‘ NNNN,MMMM pointer to “NNNN”, and the output pointer to “MMMM”.
| PUT FILNAM Saves source file in memory on the named disk file “FILNAM".
| PUT TT Saves source file in memory on track “TT"”, and following tracks.
‘ RET ASM Restart the assembler.
| RET BAS Restart BASIC.
‘ RET EM Restart the Extended Monitor.
RET MON Restart the Prom Monitor (via RST vector).
SAVE Save memory from location
TT,S=NNNN/P “NNNN” on track “TT"” sector “S” for “P” pages.
SELECT X Select disk drive, “X” where “X"” can be, A, B, C, or D. Select enables the
requested drive and homes the head to track 0.
XQT FILNAM Load the file, “FILNAM” as if it was a source file, and transfer control to
location $327E.
NOTE:

—Only the first 2 characters are used in recognizing a command. The rest up to the blank are ignored.
—The line input buffer can only hold 18 characters including the return.

—The DOS can be reentered at 9543 ($2547).

—File names must start with an “A” to “Z” and can be only 6 characters long.

—The dictionary is always maintained on disk. This permits the interchange of diskettes.

—The following control keys are valid:

CONTROL—Q continue output from a CONTROL-S

CONTROL—S stop output to the console

34

CONTROL—U delete entire line as input
BACKARROW delete the last character typed.
SHIFT—O delete the last character (polled keyboards)

ERROR NUMBERS

1—Can’t read sector (parity error).

2—Can’t write sector (reread error).

3—Track zero is write protected against that operation.
4—Diskette is write protected.

5—Seek error (track header doesn’t match track).
6—Drive not ready.

7—Syntax error in command line.

8—Bad track number.

9—Can’t find track header within one rev of diskette.
A—Can’t find sector before one requested.

B—Bad sector length value.

C—~Can’t find that name in directory.
D—Read/Write attempted past end of named file!

MEMORY ALLOCATION

by Floppies R P] Floppies
0000-22FF BASIC or Assembler/Extended Monitor - -« «cccvvvvnninniiniiiiiin i 0000-22FF
2200-22FE Cold start initialization on boot <<« v rcverrvrienrieiiiiiiiiiiiinniiiiiieeeen 2200-22FE
2300-265B Input/Output handlers ««:::reeeeesessnreiaeeisenasetenesnsesscasanseacesonnns 2300-265B
I65C-2AAK FlOPPY GBI AHWEEE == o~ wowrvie waisth sviore s s vinia o st e &'mios misi imieis waimis ot 265C-2A4A
2A4B-2E78 0S-65D V3.2 operating system kernel -« ----cvereeriiiiiiiiiiiiiiiiiiiiiiiinn 2A4B-2E78
2E79-2F78 Directol—y DUFFEL + « ¢+ s vvermsanosanractnasssasisnasesssancssasaassassaenananns 2E79-2F78
2F79-3178 Page 0/1 swap DEEEET - «oein cioiain siimince svisin o sisie sisisia elsnm b miimo 0 miais Baaie s leseie stemie Wiis 8 wie e 2F79-3178
3179-3278 DOS eXTeIISIONS « = « 56+ ¢ 6s7s s aisie a6 0 s 1768 5 aa's siais s ais s siniesansssasessssesssssssassess -
3279-327D Source file header - - «ccovovnt i easeisinaiasaessossssssssssssssesensasiansse 3179-317D
327E—- SoUTCE fIl@ ++ v v evere ettt ittt i i i i i i s 317E
DISKETTE ALLOCATION

5 Floppies ... 8" Floppies
0-1 08-65D V3.2 (boot-strap-loads to $2200 for 8 pages). - - -+« vvvvennvviiinreaanann 0-1

2-6 9% Digit Microsoft BASIC ««««« v v vvvrvsssnmmnnnnssinaseesaasumneienuennes 24

79 Assembler-Editor (if present) .. 56

1011 Extended Monitor (if PIESEIL) =+ v v+ v s resroscuseruttastussunstotnsaanaaneane. -y

i2 Sector 1—Directory, page 1. < c««cvsrsreamaaeetiotiattianetecunriestrsenenes 8

Sector 2—Directory, page 2.
Sector 3—BASIC overlays.
Sector 4—GET/PUT overlays

15 Track®/Copier utility (loads to $0200 for 5 pages). - - -« -ccreoeveriiiniaanne, 1 Sector 2
14-38 User programs and OS-65D utility BASIC programs. -« -screevernnraniiiinens 9-75
39 Compare routine, on some disks only. -« - eeerererriiiiiiiiiiiiiiiiiiii 76

I/0 FLAG BIT SETTINGS
INPUT:
Bit —ACIA on CPU board (terminal).
BIT 1—Keyboard on 540 board.
BIT 2—UART on 430/550 board.
BIT 3—NULL.
BIT 4—Memory input (auto incrementing).
BIT 5—Memory buffered disk input.
BIT 6—Memory buffered disk input.

35

BIT 7—550 board ACIA input. As selected by index at location $2323 (8995 decimal).
OUTPUT:

BIT 0—ACIA on CPU board (terminal).

BIT 1—Video output on 540 board.

BIT 2—UART on 430/550 board.

BIT 3—Line printer interface.

BIT 4—Memory output (auto incrementing).

BIT 5—Memory buffered disk output.

BIT 6—Memory buffered disk output.

BIT 7—550 board ACIA output. As selected by index.
NOTE: In the ASM $12E0 contains the number of lines per page and is set to top of page after each RE ASM.

36

APPENDIX M

THE FLOATING POINT ACCUMULATOR

The floating accumulator (FAC) on disk based
systems is located in six bytes on page zero at addresses
SAE-$B3. See Note 2 for BASIC-in-ROM. The FAC is
used during all operations involving numeric variables.
Of interest to end users is the fact that when a BASIC
statement like

Y = USR(formula)

is executed, the value of the formula is loaded into the
FAC before BASIC branches to the user’s routine. The
floating point format is

+ .m X 2°

1) e is the exponent. The byte with address $AE

2)

3)

Examples:
Number (decimal) floating point (binary)
26.5 110101 x 2@
—-26.5 —.110101 x 2@
25 o 55 B
2 1100 x 2-w

contains e+ $80.

is the mantissa. The binary point is assumed to be on
the left of m. m is always normalized, that is, m is left
shifted and e is decremented until the leftmost bit of
m is 1. Thus, for example, .125 is stored as .1 x 2
(binary) instead of .001 X 2°. The mantissa is a 32 bit
number and is put into the FAC at $AF, %B0, $B1,
$B2.

The sign of the floating point number is put into the
sign bit (leftmost bit) of the byte with address $B3.
This bit is @ for a positive number and 1 for a negative
number. The remaining bits are indeterminate and
have no meaning.

In FAC (hex)
85D400000000
85D400000080
TF8000000000
TECCCCCCCD00

Note 1: When .2 is converted from decimal to binary, it becomes an infinite repeating number. The bar over the
mantissa indicates that those four bits repeat forever. Thus, the mantissa is

.110011001100110011001100110011001100---

when this is rounded to 32 bits it becomes
.11001100110011001100110011001101

Note2: For BASIC-in-ROM, the FAC is five bytes at addresses $AC-$B0. the exponent (+ $80) is in the first byte, the
sign is the sign bit of the last byte and the mantissa is the middle three bytes.

37

APPENDIX N

W31 weayudig 150 —a S
NI JueYIuBIS 18T —(STT

X'SEV-ONI | X'SdV-08S A'SgVv-0ds [ads X"93ed ' Z-DNI | X'938d"Z-D4S A'ANI-OES 044 E|
SHY-DNI Sdv-0ds SAV-XdD dON WINI-OES [XNI aged " Z-ONI aded Z-04S| 99ed'Z-XdO X'ANI-DES | WII-XdD| 4
X'SEv-04dd | X'SaV-dND A'SEV-dIND [ATD| [X'98ed’Z-DAA [X 988 Z-dIND A'ANI-dIND ANY a
Sdv-04dd SHY-dIND SAV-AdD X4ada WINI-dIND [ANIT afed'Z-09a| 9o8ed'Z-dIWD| 99ed'Z-AdD X'ANIFdWD| WIWIFALD| D
A'SAV-XA | X'Ssav-val| X'sav-Ad1 XSL| A‘'SEV-VAT|ATO| |A™28ed'Z-XA7|X 98ed'Z-vA1|X 23ed ' Z-AAT A'ANI-VATl Sod |
SAV-Xa1| savy-val| Sav-Ad1 XViL WIWIFVAT[AVL 23ed'Z-XA1| °8ed'Z-va1| 9\Bed'zZ-AdT WIWI-XAT | X'aNI-Vad1 WALFAQT v
X'SAV-V LS SXL| A'SHV-VIS|VAL| |A'98ed'Z-X1S| X 98ed'Z-V LS| X 98.d'Z-ALS ATANI-VLS 204 6
SHV-XLS SAV-V1S SHV-ALS VXL Add 23ed'Z-X1S| 2°8ed'Z-VIS| 98ed'Z-AlLS X'ANIFVLS 8
X'SEV-40d | X'sdv-0av A'SEvV-0ayv | I19S X 08ed Z-¥0d | X 286 Z-DAV ATANI-DaV SAH &
S4v-¥0d | Ssdv-Dav ANI-dINT V-a0d WWI-DaY |V1d a8ed‘Z-40d| 98%ed’Z-Dav X'dNI-Day SLY 9
X'SEV-UST | X'sdv-d0d A'sAvV-d0d |10 X 286 Z-4ST| X 98ed ' Z-40d A'ANI-¥03 oAd S
SHY-4ST1 SHY-40d SAV-dIT V-HS1 WIWIMOT [VHd a8ed'z-us1| 98ed'Z-¥03 X 'aNI-403 1LY ¥
X'S4V-10d | X'SAV-ANV A'SEV-ANY |D9S | [X 9384 Z-10d | X 99ed ' Z-ANV AANI-ANY 1nd £
SV-10d | SAV-UNV sgv-Ld v-104 WIWI-aNV |d1d 28ed'Z-10d| 93ed'Z-ANV aBed*Z-11d X'ANI-ANV Sl z
X'SAV-1SV | X'sav-vi0 A'SAV-VHO |DT1D| | X'98ed'Z- 1SV | X 98ed'Z-V IO A'ANI-VYHO 149]
SAV-ISY | SdV-Vd0 V-18V WII-V YO |dHd A’Bed'Z-ISY| 28ed'Z-VHO X 'ANI-VHO0 nud @
asw
| a b, A% 6 8 9 S ¥ z I]
ast

318v1 3002d0

38

APPENDIX O

6502 REFERENCE LIST

1.* How to Program Microcomputers
by William Barden
Howard W. Sams & Company, Inc.
Indianapolis, IN 46268

2. 6502 Software Gourmet Guide and Cookbook
by Robert Findley
SCELBI Publications
20 Hurlbut Street
Elmwood, CT 06110

3. The First Book of KIM

4. Programming a Microcomputer: 6502
by Caxton C. Foster
Addison Wesley Publishing Company, Inc.
Reading, MA 01867

5. 6502 Assembly Language Programming
by Lance Leventhal
Osborne/McGraw-Hill

6. MCS6500 Microcomputer Family Programming Manual
MOS Technology, Inc.
950 Rittenhouse Road
Norristown, PA 19401

7. MICRO: The 65@2 Journal
P.O. Box 6502
Chelmsford, MA 01824

8. SY6500/MCS65@P Microcomputer Family Hardware Manual
Synertek
3050 Coronado Drive
Santa Clara, CA 95051

9. Programming the 6502 (Second Edition)
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

10. 6502 Applications Book
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

39

11. 6502 Games
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

12. Programming & Interfacing The 6502, With Experiments
by Marvin L. De Jong
Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, IN 46268

13.* 65V Primer: The Workbook of Programming exercises in
machine code, using your machine’s built-in 65V monitor
in ROM.

Ohio Scientific
1333 S. Chillicothe Rd.
Aurora, OH 44202

* Available from OSI

40

INDEX

A
ATATRR . . v rsvsuinsmimin s i ST e T asa s 1
Addressing
| D3¢ =L v (PSP 3
IMMENALE. .o iviicosiimisnivees s semv s s s 4
IMped. oo reisuma i vismivsesuni e sames s 5
IHACKE D ciciisninerosisninss s Rt s s S se s vowas 4
73 1 o D T T T 5
ASCIL COUES. ..0evvanernsnsnnsmnensessvasssssis Smegamss sy 32
- CRT= 1110 (=) o 1
Example.... oo ssmsasniosmusserssnvmssanre varsn 10, 11
Assembly
COMMANAS <10 oo vsssmmem s avins ssdiammavenapavwasesse 9
Bitor Codes: covnvnvinmmisnssnninssym s mriadis 22
LADGUARE. .o osusvossmmmssnassonsessiitsumsinss sssssemsianss 1
R ccsessmvsmmamms aabramsmandhnrenen ssdnenasen Sas 2,15
B
BacKzBITOW: i isssiniscvuiorasois itniis ssasasatnssanysisns 8, 35
BIEAK .. ovsinsvivineavions siaiodvinsbinsians s weiaiss i i maiai s 1
BIeakpoint. ;. cosiiaisiaveonsssasssssinamiinianmsussnas i 17
BYLG. .. ssvivnsnihns sa asesTans iV s dh a s A R e TR AR RNS 1
BIEE. e irassnnomsnsmmes vesnnsnonind s oA VR TE F T 3
C
Carriage Returnh (CR)......ocoveeeriunnerenaesccsssannes 1, 15
Code
D o) [T 1
BOIT OB insin sssinsnen vus s sa sy Loa s SHasavup SR 5 S SR RN 1
Constant
BATATY srciscw coenmsmmemensismn amaswn s snisnsamaniss nsnhnrs ads s vARs 2
| B/ it | D e L T o RO tis o8 2
HEX. . covvneiian i drvnnisses cossnses imsanmmviresire 2
D T T T 2
CTRL
B vnmssnams samanan wnsnn s wns s smm s b oiE VoS DU SRR 8
()i asnnss csmmmmpama sy onsnnsnsssnsms e e S 34
LR R WL B o P 34
| e e L L B e By 0 i 25, 35
EBICRATIOW) cuivumisiaosssviysssisimpuni aisivics s 35
Tocinssincanamnassnin oot vy ss Vo SR AR s SR e 25
B T T 25
i 25
| U SN IO SRR s e MR LR et 25
sy L e L B~ B 25

41

D
DEIRLE. isvisvnisrsiissvvnsasssinammsinssvisssnsmmarenrsinsnsmabons 8
Ditect AdGressing. ... valhssssuns viviss ssinsivatsvionss el 3
IIVISIOR S5 mamsnnssasinsnieva i oas s n s S AR SN e arad 2
E
Extended: MOnItOr coaivmsussssassssss e savssnas 15
EXaMplei.ivaisuiisnmansminmmmiiusiiorsdvinasevsasnsmes 10
F
TRl s SR i T P oS S TR S S S b s et 1
I
Immediate Addressing.......cccoivvininininrinrennneinn, 4
Implied Addressing......ccoiniviminirsninrsnisninnsienn
Indexed AdAressing....c.cicviivismmsmnnaorsensarrevenssnones 4
Indirect Addressing.......covvirermaveasvarmasirisrasnvannne 5
D 7 T T 8
L
EABBIS: civovnveisswawsnnsvig sesepsissenise ve sesmams vensvauwsssrey 2
Line Féed (LE):w s asmesmuusimioviseismsssvasoeses 1, 15
M
Machine Language.......csosuveninisavivenssmsuovosinosonsns 1
RUNDIGg PIOPLAM .« viso v isessasssisnvansissmsiivasmiss 14
M Commiant, . oiimisamsimimsaiamvsssm g 9, 17
Monitor (Extended)........ocoovvriniiiiciiiiiiininniennn. 15
0
Obijett COde..cusissmssssmmisummpansinusssvsssvsssimns 1
Operation SYmbOoIs.......ccoeeesvicieeasiesisiviosussmisnrons 2

PAPE. B isme i i S s e e R e e S 1
IO s s N s b v P R wain s Sl s e 8
R
RS 011101 18 e R T e 17
RESEQ I B, ot B, aseomeneniinmsmmbansmiosnien 8
S

SHIFT
N ot LA i L o moma enie Ee s mn b 1,8
B I e R O O o L 8, 35
P e il P Gy B s e e e 1

42

ey G Lo 1
11 L5,) T 2
T
b O B0) (=101 | ioNReRi e sateps S i 2
U
LU 57 £ i It oo b bl dot e A AR A A 1, 8, 15
\UES] o 20 o (0) ¢ bt oy Lo L R M LR Mt mth 20
W
Word..oicvmmenisiinsmessmasssvniveic s st 7

